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Abstract—This paper reviews some of the more useful, current and

newly developing methods for the solution of electromagnetic fields. It

begins with an introduction to numerical methods in general, including

specific references to the mathematical tools required for field analysis,

e.g., solution of systems of simultaneous linear equations by direct and

iterative means, the matrix eigenvulue problem, finite difference differ-

entiation and integration, error estimates, and common types of boundary

conditions. This is followed by a description of finite difference solution

of boundary and initial value problems. The paper reviews the mathe-

matical principles behind variational methods, from the Hilbert space

point of view, for both eigenvalue and deterministic problems. The signill-

cance of natural boundary conditions is pointed out. The Rayleigh-Ritz

approach for determining the minimizing sequence is explained, followed

by a brief description of the finite element method. The paper concludes

with an introduction to the techniques and importance of hybrid computa-

tion.

1. INTRODUCTION

W HENEVER ONE devises a mathematical expression

to solve a field quantity, one must be concerned

with numerical analysis, Other than those engineers

involved exclusively in measurements or in the proof of gen-

eral existence theorems or in administration, the remainder

of us are numerical analysts to a degree. Whenever we pre-

scribe a sequence of mathematical operations, we are design-

ing an algorithm. A theory is to us a means of extrapolating

our experiences in order to make predictions. A mathemat-

ical theory, of a physical problem, produces numbers and a

good theory produces accurate numbers easily.

To obtain these numbers, we must employ processes that

produce the required accuracy in a finite number of steps

performed in a finite time upon machines having finite word

length and store. Accepting these constraints we ask how

best to perform under them.

As far as engineers are concerned, there is no principal

difference between analytical and numerical approaches.

Both are concerned with numbers. Oftentimes, the so-called

“analytical” approach—as though to claim inefficiency as a

virtue—is none other than the algorithmically impotent one.

The contrast between efficient and inefficient computation

is emphasized whenever anything beyond the most trivial

work is performed. As an example, consider the solution of a

set of simultaneous, linear equations by Cramer’s rule in

which each unknown is found as a ratio of two determinants.
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A moment’s reflection will show that calculating these deter-

minants by evaluating all their cofactors is an insurmount-

able task when the order is not small. Expanding along each

row, n cofactors, each of order n — 1, are involved. Each of

these has cofactors of order n– 2 and so on. Continuing in

this way, we find that at least n! multiplications are needed

to expand the determinant. Neglecting all other operations,

and assuming that the computer does one million multipli-

cations per second, we find that it would take more years

than the universe is old to expand a determinant of order 24.

Even then, due to roundoff errors, the reliability of the result

will be questionable. Cramer’s rule then is surely not a useful

algorithm except for the smallest systems. It is certainly of

the greatest importance in general proofs and existence theo-

rems but is virtually useless for getting numerical answers.

Wilkinson, in a statement referring to the algebraic

eigenvalue problem [25, Preface] said”. . . the problem has

a deceptively simple formulation and the background theory

has been known for many years; yet the determination of

accurate solutions presents a wide variety of challenging

problems.” He would likely agree that the statement applies

equally to most of numerical analysis.

This paper is concerned with the solution of fields by

efficient, current and newly developing, computer practices.

It is intended as an introduction for those totally unfamiliar

with numerical analysis, as well as for those with some ex-

perience in the field. For the sake of consistency, many topics

had to be deleted including numerical conformal mapping,

point matching, mode matching and many others. Propo-

nents of these techniques should not feel slighted as the

author has himself been involved in one of them. In addi-

tion, it was felt advisable to concentrate on general numeri-

cal methods relevant to the microwave engineer, rather than

to review particular problems. Companion papers, in this

special issue, furnish many specific examples.

The principal methods surveyed are those of finite differ-

ences, variational, and hybrid computer techniques. Appro-

priate mathematical concepts and notations are introduced

as an aid to further study of the literature. Some of the refer-
ences, found to be the most useful for the author, are classi-

fied and listed in the bibliography.

II. SYSTEMSOF LINEAR EQuArlom

The manipulation and solution of large sets of linear,

simultaneous equations is basic to most of the techniques

employed in computer solution of field problems. These lin-

ear equations are the consequence of certain approxima-

tions made to expedite the solution. For example, approxi-

mation of the operator (Vz, often) over a finite set of points
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at which the field is to be computed (as in finite differences),

or approximation of the field estimate (as in variational

methods) causes the problem to be modeled by simultaneous

equations. These equations are conveniently represented by

matrices, It happens, and we shall see why in succeeding sec-

tions, that the finite difference approach creates huge, sparse

matrices of order 5000 to 20000. Sparseness means that there

are very few nonzero elements, perhaps a tenth of one per-

cent. On the other hand, variational methods tend to pro-

duce matrices that are small (typically of order 50), but dense

by comparison.

The size and density of these matrices is of prime impor-

tance in determining how they should be solved. Direct meth-

ods requiring storage of all matrix elements are necessarily

limited to about 150 unknowns in a reasonably large mod-

ern machine. On the other hand, it turns out that iterative

techniques often converge swiftly for sparse matrices. In

addition, if the values and locations of nonzero elements are

easily computed (as occurs with finite differences) there is no

point in storing the large sparse matrix in its entirety. In

such cases, only the solution vector need be stored along

with five nonzero elements (the number produced by many

finite difference schemes) at any stage of the iterative process.

This maneuver allows systems having upto20000 unknowns

to be solved.

This section deals with examples of direct and iterative

techniques for the solution of systems of simultaneous linear

equations. This is followed by a method for solving the

eigenvalue problem in which the entire matrix must be stored

but all eigenvectors and eigenvalues are found at once. Solu-

tion of the eigenvalue problem, by an iterative technique, is

reserved for Section IV where it is more appropriate.

A. Solution by Direct Methods

One of the most popular algorithms for the solution of

systems of linear equations is known as the method of Gauss.

It consists of two parts—elimination (or triangularizution)

and back substitution. The procedure is, in principle, very

simple and is best illustrated by means of an example.

We wish to solve the system

Ax=b (1)

where A is an nX n matrix, x and b are n-element vectors

(column matrices). b is known and x is to be computed.

Consider, for convenience, a small set of equations in three

unknowns xl, x2, and x3,

ZI+4XZ+ X3= 7

ZI+6XZ— x3=13

2XI – Xx + 2x3 = ~.

This example is from [9, pp. 187–188]. Subtract the first
equation from the second of the set.

first from the last. This results in

XI+4ZZ+ X3=

2X2 – 2X3 =

– 9*z + 0Z3 =

Then subtract twice the

7

6

417

The first equation, which was used to clear away the first

column, is known as the pivot equation. The coefficient of the

equation, which was responsible for this clearing operation,

is termed the pivot. Now, the first term of the altered second

equation is made the pivot. Adding

equation to the last, we obtain

XI +4X2+ X3=

2x 2 – 2X: =

– 9X3 =

4.5 times the second

7

6

18.

Clearly, in the computer there is no need to store the equa-

tions as in the preceding sets. In practice, only the numerical

values are stored in matrix form with one vector reserved for

the as yet unknown variables. When the above procedure is

completed, the matrix is said to have been triangularized.

The final step, back substitution, is now initiated. Using

the last equation of the last set, it is a simple matter to solve

for X8= – 2. Substituting the numerical value of X3 into the

second equation, X2= 1 is then easily found. Finally, from

the first equation, we get xl = 5. And so on back through all

the equations in the set, each unknown is computed, one at

a time, whatever the number of equations involved.

It turns out that only n3/3 multiplications are required to

solve a system of n real, linear equations. This is a reasonable

figure and should be compared with the phenomenal amount

of work involved in applying Cramer’s rule directly. In addi-

tion, the method is easy to program.

This simplified account glosses over certain difficulties

that may occasionally occur. If one of the pivots is zero, it is

impossible to employ it in clearing out a column. The cure is

to rearrange the sequence of equations such that the pivot is

nonzero. One can appreciate that even if the pivot is nonzero,

but is very small by comparison with other numbers in its

column, numerical problems will cause error in the solution.

This is due to the fact that most numbers cannot be held

exactly in a limited word-length store. The previous exam-

ple, using integers only, is exceptional. Typically, depending

on the make of machine, computers can hold numbers with

7 to 11 significant digits in single precisioti.

To illustrate the sort of error that can occur, consider the

example, from [15, p. 34]. Imagine that our computer can

hold only three significant digits in j?oating point form. It

does this by storing the three significant digits along with an

exponent of the base 10. The equations

1.00 x 1O-4XI + 1.00Z, = 1.00

1.00X, + 1.0022 = 2.00

are to be solved. Triangularizing, as before, while realizing

the word-length limitation, we obtain

1.00 x lo–%, + 1 .Oox, = 1.00

– 1.00 x 10% = – 1.00 x 104.

Solving for X2 then back-substituting, the computed result

is x.2= 1.00 and xl = 0.00 which is quite incorrect. By the sim-

ple expedient of reversing the order of the equations, we find. .
– 9. the result m= 1.00 and ‘xl= 1.00 which is correct to three
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significant digits. The rule then is, at any stage of the com-

putation, to select the largest numerical value in the relevant

column as the pivot and to interchange the two equations

accordingly. This procedure is known as a partial pivoting

strategy. Complete pivoting strategy involves the interchange

of columns as well as rows in order to use the numerically

largest number available in the remaining equations as the

pivot. In practice, the results due to this further refinement

do not appear to warrant the additional complications and

computing time.

The previous example suffered from a pure scaling prob-

lem and is easily handled by a pivoting strategy, On the other

hand, except for the eigenvalue problem, nothing can be

done about solving a system of linear equations whose co-

efficient matrix is singular. In the two dimensional case,

singularity (i.e. the vanishing of the coefficient matrix de-

terminant) means that the two lines are parallel. Hence, no

solution exists. A similar situation occurs with parallel

planes or hyperplanes when the order is greater than two. A

well-conditioned system describes hyperplanes that intersect

at nearly 90°. The intersection point (or solution) is relatively

insensitive to roundoff error as a consequence. If hyperplanes

intersect at small angles, roundoff error causes appreciable

motion of the intersection point with a low degree of trust

in the solution. Such systems are termed ill-conditioned.

It is unnecessary, and wasteful, to compute the inverse A–I

in order to solve (l). Occasionally, however, a matrix must

be inverted. This is reasonably easy to accomplish. One of

the simplest methods is to triangularize A, as previously de-

scribed, and then to solve (1) n times using a different right-

hand side b each time. In the first case b should have 1 in its

first element with zeros in the remainder. The 1 should then

appear in the second location for the next back-substitution

sequence, and so on. Each time, the solution gives one col-

umn of the inverted matrix and n back-substitutions produce

the entire inverted matrix. See [12, pp. 32–33 ]. The pro-

cedure is not quite so simple when, as is usually advisable, a

pivoting strategy is employed and when one wishes to tri-

angularize A only once for all n back-substitutions. IBM

supplies a program called MINV which does this, with a

complete pivoting strategy, in an efficient fashion.

Westlake [24, pp. 106-107] reports results of inverting a

matrix of order n= 50 on CDC 6600 and CDC 1604A mac-

hines. Computing times were approximately 0.3 and 17

seconds, respectively. These figures are about double that
predicted by accounting only for basic arithmetic opera-

tions. The increased time is due to other computer operations

involved and is some function of how well the program was

written. Tests run on the University of Manitoba IBM

360/65 showed that MINV inverts a matrix of order 50 in

3.38 seconds. The matrix elements were random numbers in

the range O to 10.

Note that the determinant of a triangular matrix is simply

the product of the diagonal terms.

The elimination and back-substitution method is easily

adapted to the solution of simultaneous, linear, complex

equations if the computer has a complex arithmetic facility,

as most modern machines do. Failing this, the equations can

be separated into real and imaginary parts and a program

designed for real numbers can then be used. The latter pro-

cedure is undesirable as more store and computing time is

required.

Other inversion algorithms exist, many of which depend

upon particular characteristics of the matrix involved. In

particular, when a matrix is symmetric, the symmetric

Cholesky method [3, pp. 7678 and 95–97] appears to be

the speediest, perhaps twice as fast as Gauss’s method. Under

the above condition, we can write

A=LE (2)

where the tilde denotes transposition. L is a lower triangular

matrix, i.e., nonzero elements occur only along and below

the diagonal as in

111 0 0

[1

L= 121 122 0 . (3)

1,1 132 133

The elements of L may be easily determined by successively

employing the following equations:

all = 1112,a12 = 111121, a13 = 111131,a2.2= 1212+ 1222,
(4)

aaa = 121131+ 122132j a33 = 1312 + 1322 + 1332.

Thus, the first equation of (4) gives 111explicitly. Using 111,

the second equation supplies 121,and so on. This operation

is known as triangular decomposition.

The inverse of A is

A-l = ~-1~-l = (L:l)L-I (5)

which requires the inverse of L and one matrix multiplica-

tion. The inverse of a triangular matrix is particularly easy

to obtain by the sequences

lIIZII = 1, 121X11+ 1222’21= o,

231Z11 + Z32$Z1 + Z33X21= o, 122X22= 1, (6)

l,,x,, + 1,3X32= o, 133X33 = 1,

In this way, a symmetric matrix is most economically

inverted.

From (4), it is clear that complex arithmetic may have to

be performed. However, if in addition to being symmetric A

is positive definite as well, we are assured [3, p. 78] that only

real arithmetic is required. In addition, the algorithm is ex-

tremely stable.

B. Solution by Iterative Methods

Iterative methods offer an alternative to the direct meth-

ods of solution previously described. As a typical ith equa-

tion of the system (l), we have

& a,,xj = b<. (7)
j=l

Rearranging for the ith unknown

.i=:_~5.j. (8)
j=l ait
j#i
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This gives one unknown in terms of the others. The intention

is to be able to make a guess at all variables M and then suc-

cessively correct them, one at a time, as indicated above.

Different strategies are available. One can, for example,

compute revised estimates of all xi using the previously

assumed values. Upon completion of the scan of all equa-

tions, the old values are then overwritten by the new ones.

Intuitively, it seems reasonable to use an updated esti-

mate, just as soon as required, rather than to store it until

the equation scan is completed, With the understanding that

variables are immediately overwritten in computation, we

have

with 1S i< n, m> O. m denotes the iteration count. The two-

part summation indicates that some variables are newly up-

dated. With this method, only n storage locations need be

available for the xl (in comparison with 2n by the previous

system), and convergence to the solution is more rapid

[22, p. 71].

The difference between any two successive xi values cor-

responds to a correction term to be applied in updating the

current estimate. In order to speed convergence, it is possible

to overcorrect at each stage by a factor w Q usually lies be-

tween 1 and 2 and is often altered between successive scans

of the equation set in an attempt to maximize the conver-

gence rate. The iteration form is

(lo)

It turns out that convergence to the solution is guaranteed

if matrix A is symmetric and positive definite [34, pp. 237–

238] and if O< w<2. If m<1 we have underrelaxation, and

ovemelaxation if m>1. This procedure is known as successive

overrelaxation (SOR), there being no point in underrelaxing.

Surprisingly, (10) can be described as a simple matrix

iterative procedure [22, pp. 58–59 ]. By expansion, it is easy

to prove that

(D - @)x@+l) = {(1 - u)D + CJ’}x(n) + cob (11)

where D is a diagonal matrix consisting of the diagonal ele-

ments of A, E consists of the negative of all its elements be-

neath the diagonal with zeros elsewhere, and F is a matrix

having the negative of those elements above the diagonal of
,4. Rearranging (11),

X(.+l) = (D _ ~~)–1{(’ _ ~)~ + ~~]x(m)

(12)
+ (.o(D – O.E)-%.

Define the matrix accompanying x @’Jas

&. = @ – 6JE)-’{(1– CO)D+ d’]. (13)

&is known as the SOR iteration matrix and plays an impor-

tant role in convergence properties of the method.

The iterative procedure can be rewritten

where c is the last term of (12). Of course, one does not

literally set up &, in order to perform the SOR. process, but

& and (14) express mathematically what happens when the

algorithm described by (10) is implemented.

The process must be stationary when the solution is at-

tained, i.e., x(~+l) = x(~) =x. Therefore, we must have that

c = (1 — $.)x. (15)

Substitute (15) into (14) and rearrange to obtain

X(m+l) — x==J30(xbfd — x). (16)

These terms are clearly error vectors as they consist of ele-

ments giving the difference between exact and computed val-

ues. At the mth iteration, the form is

~(m) = ~(m) — ~. (17)

Therefore (16) becomes

~(m+l) = &@8 (m) = &@28(m–1)

(18)
. ..= &m+18(o)

due to the recursive definition of (16). It is therefore clear

that the error tends to vanish when matrix& tends to vanish

with exponentiation. It can be proved [22, pp. 13–15 ] that

any matrix A raised to a power r vanishes as r-+ co if and

only if each eigenvalue of the matrix is of absolute value less

than one. It is easy to demonstrate this for the special case

of a real, nonsymmetric matrix with distinct eigenvalues. We

cannot be sure that & (which is not symmetric in general)

has only distinct eigenvalues, but we will assume this for pur-

poses of illustration. In this case all eigenvectors are linearly

independent. Therefore, any arbitrary error vector & may

be expressed as a linear combination of eigenvectors 1; of

&@,i.e.,

~ = alll + a212 + . . “ + d.. (19)

If the eigenvectors are known, the unknown ai may be found

by solving a system of simultaneous linear equations. As the

Ii are linearly independent, the square matrix consisting of

elements of all the Ii has an inverse, and so a solution must

exist.

Performing the recursive operations defined by (18), we

obtain

where pi is the eigenvalue of.& corresponding to the eigen-

vector Ii. It is obvious, from (20), that if all eigenvalues of
& are numerically less than unity, SOR will converge to the

solution of(l). In the literature, the magnitude of the largest

eigenvalue is known as the spectral radius p(&J.

It is also easily shown that the displacement vector 5,

which states the difference between two successive x esti-

mates, can replace s in (18>(20).

A sufficient, although often overly stringent condition, for
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the convergence of SOR is that the coefficient matrix A dis-

play diagonal dominance. This occurs if, in each row of A,

the sum of the absolute values of all off-diagonal terms is

greater than the absolute value of the diagonal term itself.

In practice, we are concerned not only with whether or not

convergence will occur, but also with its speed. Equation (20)

indicates that the smaller the spectral radius of&, the more

rapidly convergence occurs. As indicated by the subscript,

.& and its eigenvalues are some function of the acceleration

factor u. The relationship between coand the spectral radius

P(SJ is a very complicated one and so only very rarely can

the optimum acceleration factor uoPt be predicted in ad-

vance. However, some useful schemes exist for successively

approximating uoP~ as computation proceeds (see [14],

[15], [17]-[20]).

To conclude, the main advantage of SOR is that it is un-

necessary to store zero elements of the square matrix as is

required by many direct methods. This is of prime impor-

tance for the solution of difference equations which require

only the vector to be stored. Also, the iteration procedure

tends to be self-correcting and so roundoff errors are some-

what restricted. There are direct methods that economize on

empty matrix elements, but SOR is perhaps the easiest way

to accomplish this end.

C. The Matrix Eigenvalue Problem

The general matrix eigenvalue problem is of the form

(A – AB)X = o (21)

where A and B are square matrices. This is the form that re-

sults from a variational solution (see Section V). The prob-

lem is to find eigenvalues x and associated eigenvectors x

such that (21) holds. This represents a system of linear,

homogeneous equations and so a solution can exist only if

determinant of (A – MI) vanishes. If A and B are known

matrices, then a solution can exist only for values of A which

make the determinant vanish. Eigenvectors can be found that

correspond to this set of eigenvalues. It is not a practical

proposition to find the eigenvalues simply by assuming trial

A values and evaluating the determinant each time until it is

found to vanish. Such a procedure is hopelessly inefficient.

An algorithm for matrices that are small enough to be

held entirely in the fast store (perhaps n = 100) is the Jacobi

method for real, symmetric matrices. Although it is not a

very efficient method, it is fairly easy to program and serves
as an example of a class of methods relying upon symmetry

and rotations to secure the solution of the eigensystem.

If B= 1, the unit matrix, (21) becomes

(A – AI)X = o (22)

which is the form obtained by finite difference methods. If

A can be stored in the computer, and if A is symmetric as

well, a method using matrix rotations would be used. Equa-

tion (21) may not be put into this form, with symmetry pre-

served, simply by premultiplying by B–l. The product of two

symmetric matrices is not in general symmetric. However, if

we know that B is symmetric and positive definite, triangular

decomposition (as described in Section II-B) may be em-

ployed using only real arithmetic. Therefore

where

C = L-lAZ-l.

[23)

(24)

Note that ~ equals C and so it is symmetric.

Taking the determinant of both sides of (23),

det (A – hB) = det (L)’ det (C – Al). (25)

Since det (L) is nonzero, we can see that eigenvalues of A

are those of C. Therefore, instead of (21), we can solve the

eigenvalue problem

(c – M)y=o (26)

where

y = Zx. (27)

We therefore obtain the required eigenvalues by solving (26).

Eigenvectors y are easily transformed to the required x by

inverting ~ in (27).

Orthogonal matrices are basic to Jacobi’s method. A

matrix T is orthogonal if

If T consists of real elements, it is orthogonal if the sum of

the squares of the elements of each column equals one and

if the sum of the products of corresponding elements in two

different columns vanishes. One example is the unit matrix

and another is

[

Cos +
T=

— sin @

sin @ 1Cos+- (29)

Matrix (29) can be inserted in an otherwise unit matrix such

that the cos @terms occur along the diagonal. This is also an

orthogonal matrix and we shall denote it T as well.

Since the determinant of a product of several matrices

equals the product of the determinants, we can see from (28)

that det (T)= 1 or – 1. Therefore

det (A – M) = det (T(A – M) ~)

= det (T.4 ~ – U)
(30)

and so the eigenvalues of A and TAT are the same.
It is possible to so position (29) in any larger unit matrix,

and to fix a value of @, such that the transformed matrix

TAT has zeros in any chosen pair of symmetrically placed

elements. Usually one chooses to do this to the pair of ele-

ments having the largest absolute values. In doing this, cer-

tain other elements are altered as well. The procedure is re-

peated successively with the effect that all off-diagonal terms

gradually vanish leaving a diagonal matrix. The elements of

a diagonal matrix are the eigenvalues and so these are all

given simultaneously. It is possible to calculate the maximum

error of the eigenvalues at any stage of the process and so to

terminate the operation when sufficient accuracy is guar-

anteed. The product of all the transformation matrices is
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continuously computed. The columns of this matrix are the

eigenvectors of A. See [3, pp. 109–1 12] and [7, pp. 129-131].

Probably the most efficient procedure, in both storage and

time, is that due to Householder. It is described by Wilkin-

son [26] and, in a very readable form, by Walden [23].

A method, employing SOR for large sparse matrices, is

described in Section IV,

III. FINITE DIFFERENCES

The importance of finite differences lies in the ease with

which many logically complicated operations and functions

may be discretized. Operations are then performed not upon

continuous functions but rather, approximately, in terms of

values over a discrete point set. It is hoped that as the dis-

tance between points is made sufficiently small, the approxi-

mation becomes increasingly accurate. The great advantage

of this approach is that operations, such as differentiation

and integration, may be reduced to simple arithmetic forms

and can then be conveniently programmed for automatic

digital computation. In short, complexity is exchanged for

labor.

A. Di&erentiation

First of all, consider differentiation. The analytic approach

often requires much logical subtlety and algebraic innova-

tion. The numerical method, on the other hand, is very direct

and simple in principle. However, implementation in many

instances presents problems of specific kinds.

Consistent with a frequent finite difference notation, a

function~ evaluated at any x is often written~(x) =f,. At a

point, distance h to the right f’(x+k) =f,+~. To the left we

have f~_~, f~_,~, etc. Alternatively, nodes (or pivotal points)

are numbered i yielding function values f ~,f i+l$ f i–l, etc. It is

understood that the distance between nodes is h and node i

corresponds to a particular x. Refer to Fig. 1. The derivative

f:= g/dx, at any specified x, may be approximated by the
forward dl~erence formula

~, = .fz+h – f.
x

h
(31)

where the function is evaluated explicitly at these two points.

This, for very small h, corresponds to our intuitive notion of

a derivative. Equally, the derivative maybe expressed by the

backward dl~erence formula

(32)

These are, in general, not equal. The first, in our example,

gives a low value and the second a high value. We can there-

fore expec+ the average value

(33)

to give a closer estimate. This expression is the central dzjfer-

ence formula for the first derivative. In the figure, we see that

the forward and backward differences give slopes of chords

on alternate sides of the point being considered. The central

f(x)

I

fx.h I

fi.1 I
fx ‘

I $1 fx*
I

‘i+l1
x-h x-h/2 X X+h/Z x+h x
l-l i-1/2 i i +l/2 i+l I

Fig. 1. Forward, backward, and central differences.

difference, given by the slope of the chord passing through

fzfh and f.-,, certainly appears to approximate the true de-
rivative most closely. Usually, this is so. Forward and back-

ward difference formulas are required to compute derivatives

at extreme ends of series of tabulated data. The central dif-

ference formula is preferred and should be used if data are

available on both sides of the point being considered.

An idea of the accuracy of (31}(33) is obtained from a

Taylor’s expansion at x+h. This gives

Similarly, at x– h

Subtractingfz from (34), then rearranging, gives

O(h) means that the leading correction term deleted from this

forward difference derivative approximation is of order h.

Similarly, from (35), the backward difference formula can

be seen to be of order h as well.

Subtracting (35) from (34), and rearranging, we obtain

f: = (f.+}’ – fz-,)/2h – ~h2fJ” + .-.

= (fm+h– f.-h)/2h + O(h’)
(37)

which is the central difference formula (33) with a leading

error term or order hz. Assuming that derivatives are well

behaved, we can consider that the h’ term is almost the sole

source of error. We see that decreasing the interval results
in higher accuracy, as would be expected. In addition, we see

that the error decreases quadratically for the central differ-

ence derivative and only linearly for the forward or back-

ward difference ones.

Only two of the three pivotal points shown in Fig. 1 were

needed for evaluating the first derivative. Using the three

available pivots, a second derivative maybe computed. Con-
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sider the derivative at x+h/2. Using central differences, with

half the previous interval,

.f~+hiz = (f~+~ – ~S)/h. (38)

Similarly,

f;-h/z = (.fz – j#t)/ii (39)

giving the values of the first derivative at two points distance

h apart. The second derivative at x is then

(40)

= (fcc+h– 3.+ f.-it)/h2

in which (33) has been applied with (38) and (39) supplying

two first derivative values. By adding (34) and (35), (40) may

be derived with the additional information that the error is

of order hz.

Another point of view for understanding finite difference

differentiation is the following. Assume that a parabola

f(z) = az’ + bx + c (41)

is passed through the three points f.–h, f., and fz+h of Fig. 1.

For simplicity let x= O. Evaluating (41) at x= – h, O, and h,

we easily find that

a = (f~ – 2~0 + f–h) /2h2, (42)

b = (fh – f-h)/2k (43)

and

c = fo. (44)

Differentiating (41), then setting x= O, we find we get the

same forms as (33) and (40) for the first and second deriva-

tives. Thus, differentiation of functions specified by discrete

data is performed by fitting a polynomial (either explicitly

or implicitly) to the data and then differentiating the poly-

nomial. It is clear then that an nth derivative of a function

can be obtained only if at least n+ 1 data points are avail-

able. A word of warning—this cannot be pursued to very

high orders if the data is not overly accurate. A high-order

polynomial, made to fit a large number of approximate data

points, may experience severe undulations. Under such cir-

cumstances, the derivative will be unreliable due to higher

order terms of the Taylor series. Also note that accuracy of

a numerical differentiation cannot be indefinitely increased

by decreasing h, even if the function can be evaluated at any
required point. Differentiation involves differences of num-

bers that are ahnost equal over small intervals. Due to this

cause, roundoff error may become significant and so the

lower limit to h is set largely by the computer word length.

Bearing in mind that high-order polynomials can cause

trouble, some increase in accuracy is possible by using more

than the minimum number of pivots required for a given

derivative. For example, as an alternative to (40), the second

derivative can be obtained from

f~’ = (–f.-z~+ 16f.-~– 30f.+ 16f.+h–f.r+m)/12h’ (45)

with an error of 0(h4).

Not always are evenly spaced pivotal points available.

Finite difference derivative operators are available for such

Y

I

I
i,j+l

h

I

‘-’--f--i
h

1 i,j-1

x

Fig. 2. Five point, finite difference operator.

cases as well. This is obvious as approximating polynomials

can be fitted to data not equispaced. For example, if pivots

exist at x— h, x, and x+ ah (where a is a real number), an

appropriate derivative expression is

f:! = 2
(af~-~ – (1 + a)f~ + f~+~) (46)

C& + l)h2

which is identical to (40) when a= 1. However, if a# 1, (46)

and other differentiation equations for unsymmetric pivots

have reduced accuracy.

The preceding, and many other differentiation expressions,

are given in [12, pp. 64-87]. For instance, since numerical

differentiation involves the determination and subsequent

differentiation of an interpolating polynomial, there is no

reason that the derivative need be restricted to pivotal

points.

Finally, the most important derivative operator for our

purposes is the Laplacian V2. In two dimensions it becomes

V?. Acting upon a potential 4(x, y) we have

(47)

where x and y are Cartesian coordinates. Using a double

subscript index convention, and applying (40) for each

coordinate, the finite difference representation of (47) is

Fig. 2 illustrates this five point, finite difference operator

which is appropriate for equispaced data. Often it is neces-
sary to space one or more of the nodes irregularly. This is

done in the same fashion employed in the derivation of (46)

[12, pp. 231-234]. Finite difference Laplacian operators are

also available in many coordinate systems other than the

Cartesian. For example, see [12, pp. 237-252].

B. Integration

Numerical integration is used whenever a function cannot

easily be integrated in closed form or when the function is

described by discrete data. The principle behind the usual

method is to fit a polynomial to several adjacent points and

integrate the polynomial analytically.

Refer to Fig. 3 in which the function f(x) is expressed by

data at n equispaced nodes. The most obvious integration
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f(x

i-1 i i-1 i i+l
x

Fig. 3, Integration under the curvej(x). Trapezoidal rule for a single
strip and Simpson’s 1/3 rule for pairs of strips.

formula results by assuming that the function~(x) consists of

piecewise-linear sections. Each of these subareas is easily

computed through

where x; is the value of x at the ith pivot. The total area is

found by summing all A;. Equation (49) is the trapezoidal

rule for approximating the area under one strip with error of

order hs.
The trapezoidal formula (49) may be applied, sequentially,

to a large number of strips. In this way we obtain

which has a remainder of order h2. The decrease in accuracy,

compared with the single-strip case, is due to error accu-

mulated by adding all the constituent subareas.

A more accurate formula (and perhaps the most popular

one) is Simpson’s * rule

(51)
.5

which, by using a parabola, approximates the integral over

two strips to 0(h5). If the interval (a, b) is divided into an

even number of strips, (51) can be applied at each pair in

turn. Therefore

Jbf(z)dz e : (f, + 4fl + 2f2 + 4f3 + “ “ “
n (52)

+ 2fn-, + 4fn_, + f.)

with an error of 0(h4). Another Simpson’s formula, known

as the ~ rule (because the factor % appears in it), integrates

groups of three strips with the same accuracy as the $ rule.

Thus, the two Simpson’s rules may be used together to cater

for an odd number of strips.

By and large, integration is a more reliable process than

differentiation, as the error in integrating an approximating

polynomial tends to average out over the interval.
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Fig. 4. Error as a function of mesh interval.

It is not possible to indefinitely reduce h with the expecta-

tion of increased accuracy. Although smaller intervals reduce

the discretization error, the increased arithmetic causes

larger roundoff error. A point is reached where minimum

total error occurs for any particular algorithm using any

given word length. This is indicated in Fig. 4.

Highly accurate numerical integration procedures are pro-

vided by Gauss’ quadrature formulas [7, pp. 3 12–367].

Rather than using predetermined pivot positions, this

method chooses them in order to minimize the error. As a

result, it can only be used when the integrand is an explicit

function.

Multiple integration [12, pp. 198–206] is, in theory, a

simple extension of one-dimensional integration. In practice,

beyond double or triple integration the procedure becomes

very time consuming and cumbersome.

To integrate

bd
v= H f.,uclxdy (53)

ac

over the specified limits, the region is subdivided (see Fig.

5(a)). As one would expect, to perform a double integration

by the trapezoidal rule, two applications of (49) are required

for each elemental region. Integrating along x, over the ele-

ment shown, we obtain

h
gj = ~ (fi,j + .fi+l!J (54)

h

9j+l = ~ Ui!,+l + fi+l!j+l). (55)

It now remains to perform the integration

which results from two applications of the trapezoidal rule,
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i,j+l i+l, j+l

; ~hff(x,y)dxdy

n
i ,j i+l, j

(a)

w“+’
W“’;f[f(x’y)dxdy

‘1 -’”-’
I

x

(b)

Fig. 5. Double integration molecules. (a) Trapezoidal rule.
(b) Simpson’s 1/3 rule.

Similarly, three applications of Simpson’s ~ rule produce

V = ~ { 16j’;,j -1- 4(fi,j-1 + .ft+I,~ + .f’i,j+I + fi-1,~)

+ .fi+l,i-l + .ft+l,f+l + ,fi-l,i+l + J“.t-1,+1 }

(57)

which gives the double integral off. ,Vover the elemental two

dimensional region of Fig. 5(b). Molecules in the figure

illustrate the algorithm,

IV. FINITE DIFFERENCE SOLUTION OF

PARTIAL DIFFERENTIAL EQUATIONS

The finite difference technique is perhaps the most pop-

ular numerical method for the solution of ordinary and

partial differential equations. In the first place, the differen-

tial equation is transformed into a difference equation by

methods described in Section III. The approximate solution

to the continuous problem is then found either by solving

large systems of simultaneous linear equations for the

deterministic problem or by solving the algebraic eigenvalue

problem as outlined in Section II. From the point of view

of fields, the resulting solution is then usually a potential

function @ defined at a finite number of points rather than

continuously over the region.

A. Boundary Conditions

The most frequently occurring boundary conditions are of

several, very general forms. Consider, first of all, the Dirich-

Iet boundary condition defined by

0(s) = g(s) (58)

which states the values of potential at all points or along any

number of segments of the boundary. See Fig. 6 which

represents a general two-dimensional region, part of it obey-

ing (58). If we visualize this region as a sheet of resistive

material, with surface resistivity r, the Dirichlet border is

simply one maintained at a potential g(s). At ground poten-

tial, g(s) = O which is the homogeneous Dirichlet boundary

condition.

Dirichlet boundary

&%:&

I mn ‘:P
o rs

e t

‘\ +-t.... .,
....

---.--%----~ kouchy
----- boundary

Neunmnn
boundary 3$

%’ l:~’’’-’’’’---------”’’q(s)(d+(d’q(s)
Fig. 6. A mixed boundary value problem.

The Neumann boundary condition

(59)

is also easy to interpret physically. Imagine current to be

forced into the region, from across the boundary, at a rate

independent of the potential. A large number of constant

current sources, strung along the boundary, would simulate

this effect. The normal, linear current flow density is – in(s),

the negative sign signifying a flow direction in a sense oppo-

site to the unit normal. The surface resistivity r divided into

the normal electric field strength at the boundary t@/&z \,
—— —in(s), i.e., (1/r)/(&j/&z) 1, = —in(s). Another analogy is

the flux emanating from a distributed sheet of charge backed

by a conductor. In general then, the Neumann boundary

condition is written as in (59). Along an impermeable border,

an open circuit in Fig. 6, p(s)= O.

The remaining boundary condition, of concern to us, is

the Cauchy (or third) condition. Imagine that the border is

a film offering resistance R to current flowing across it. Such

a film occurs in heat transfer between, say, a metal and a

fluid. A series of resistors strung out across the boundary

would simulate such an effect. Let the potential just outside

the conducting region be ~O(s), a function of position along

the curve. The potential just inside is $(s) and so the linear

current density transferred across is iJs) = (+(s) – dO(s))/R

where R is the film resistance. Since (l/r)/(d@/iIn)]. = – i.(s),

we have by eliminating i.(s), (R/r)/(E@/&z) 1,+d(s) = +.(s).

In general, this is written

C3(j
-& + a(s)cj(s) = q(s).

s
(60)

A harmonic wave function 4, propagating into an infinite

region in the z direction, obeys &p/8z = –jp~ or &$/dz+j@$

= O at any plane perpendicular to z. This is a homogeneous

case of (60).

A region having two or more types of boundary conditions

is considered to constitute a mixed problem.

B. D@erence Equations of the Elliptic Problem

Second-order partial differential equations are conve-

niently classified as elliptic, parabolic, and hyperbolic [12,

pp. 190-191 ]. Under the elliptic class fall Laplace’s, Poisson’s,
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and the Helmholtz partial differential equations. By way of

illustration, we will now consider the first and last ones.

Fig. 6 shows several five-point operators in somewhat

typical environments. To be specific, consider the discretiza-

tion of Laplace’s equation

V%j = o (61)

consistent with the applied boundary conditions. From (48),

(61) becomes

+a+@%–@c+$d+&=O. (62)

A reasonably fine mesh results in a majority of equations

having the form of (62). The trouble occurs in writing finite

difference expressions near the boundaries. Near the Dirich-

Iet wall we have Of= g(sl) where SI denotes a particular point

on s. Making this substitution, the finite difference expres-

sion about node h is

+, –4r#J/, +@i+@lj=-gf (63)

where S1and nodef coincide. Along the Neumann boundary,

(59) must be satisfied. To simplify matters for illustration,

the five-point operator is located along a flat portion of the

wall. Using the central difference formula (33), (59) becomes

.

–410100

1–4 1 0 1 0

0 1–4 o 0 1

1 0 o–4 1 0

01 01–41

0010 1 –4

000 100

000010

(4~–&)/2h =p~. This equation can then be used to eliminate
node 1 from the difference equation written about node m.

Therefore

~~ – @., + 26. + @o= – 2hpm. (64)

Finally, at the Cauchy boundary, (4. – 4J/2h+ u,& = q,

which makes the node r difference equation

& + 24, – 4(1 + urhi~)or + @ = – 2hg,. (65)

SOR is employed to solve for each node potential in terms

of all other potentials in any given equation. As there are at

most five potentials per equation, each node is therefore

written in terms of its immediately adjacent potentials. In

other words, it is the central node potential of each operator

that is altered in the iterative process. As all points on a
Dirichlet boundary must maintain fixed potentials, no

operator is centered there. This does not apply to Neumann

and Cauchy boundaries, however, and so potentials on these

walls must be computed.

It is no mean feat to program the logic for boundaries

(particularly non-Dirichlet ones) which do not correspond

to mesh lines, and this is one of the major drawbacks of the

finite difference approach. The literature gives a number of

425

4(s) =V.-,

Fig. 7. Finite difference mesh for solution of Laplace’s equation under
Dirichlet boundary conditions.

appropriate schemes. See for example [28], (34, pp. 198–

204] , [35, pp. 262-266], [37, pp. 36-42].

In reference [27] a simple, although somewhat inaccurate,

method for fitting an arbitrary shape is given. For simplicity,

the boundary was permitted to deform, at each horizontal

mesh level, to the nearest node point.

A crude-mesh difference scheme, for the solution of

Laplace’s equation under Dirichlet boundary conditions, is

shown in Fig. 7. The appropriate difference equations can

be written in matrix form in the following fashion:

o 0-

00

00

10

01

00

–4 1

1 –4.

or

.

– 2V

—v

– 2V

—v

o

—v I

o

01

(66)

A+ = b. (67)

There are several significant features about (66). In the first

place, there are a fairly large number of zeros. In a practical

case, the mesh interval in Fig. 7 would be much smaller and

the square matrix would then become very sparse indeed. In

addition, the nonzero elements of any row of the square

matrix and any element of the right-hand side vector maybe

easily generated at will. It is clear therefore that SOR (or

any similar iterative scheme) is the obvious choice for solv-

ing the system of linear equations. All computer store may

then be reserved for the ~ vector and the program, thus

allowing for a very fine mesh with consequent high accuracy.

Certainly, a direct solution scheme, such as triangularization

and back substitution, could not be considered feasible.
Green [36] discusses many practical aspects and problems

associated with the solution of Laplace’s equation in TEM

transmission lines. Seeger [42] and Green describe the form

of the difference equations in multidielectric regions.

Now, let Fig. 7 represent an arbitrarily shaped waveguide.
For this purpose, the boundaries must be closed. The tech-

nique is to solve for a potential @ in finite difference form.
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If z is along the axial direction, z&+ is proportional to E, or

H. depending on whether TM or TE modes are being con-

sidered. For TM modes the boundary condition is the

homogeneous Dirichlet one (58), i.e., with g(s)= O. Fields

are then derived from

Z= +,4
c

H,=O

if E, is made eaual to d. Likewise, the homogeneous

(68)

Neu-.
mann condition (59) (with p(s)= O) applies to TE modes,

with fields obtainable from

Ez=O
(69)

Hz = 4.

k, is the cutoff wavenumber and Y the propagation constant.

Of course, one does not solve for@ but rather for +, a vector

of discrete potentials, and so the differentiations indicated

by (68) and (69) must be performed by techniques outlined

in Section III-A.

Discretization of the Hehnholtz equation

(v,’ + k.’)d = o (70)

produces a matrix eigenvalue problem of the form

(A – AI)+ = o. (71)

About a typical internal node such as 5 in Fig. 7, the finite

difference form of (70) is

‘@z–@4+ (4– A)@5–@6– @8=0 (72)

where

A = (l:ch) ‘. (73)

Equations such as (72), suitably amended for boundary con-
ditions, make up the set expressedby(71). Signs are changed
in (72) to make, as is the frequent convention, the matrix

positive semidefinite rather than negative semidefinite.

Successive overrelaxation can be used to solve the matrix

eigenvalue problem (71). In the first place a fairly crude

mesh, with perhaps 50-100 nodes, is “drawn” over the guide

cross section. A guess at the lowest eigenvalue (either an

educated one or perhaps the result of a direct method on an

even coarser mesh) is taken as a first approximation. The
elements of vector @are set to some value, perhaps all unity.

SOR is then initiated generating only one row at a time of

A – AZ as required. A nontrivial solution of (A – A&$ can
exist only if the determinant vanishes, i.e., the guess at k is

a true eigenvalue. In general, the 1 estimate will be in error

and so ~ cannot be found by SOR alone and an outer

iteration employing the Rayleigh quotient (defined later)

must be employed.

Application of SOR to a homogeneous set of equations

causes (14) to assume the form

+(m+l) = &@,A+(m). (74)

The subscript A has been added to the iteration matrix to

indicate a further functional dependence. As in Section II-B,

for illustration, assume that J&,l is a real (generally non-

symmetric) matrix with distinct eigenvalues. Then, @(~)

may be expressed as a linear combination of eigenvectors of

&,i, i.e.,

~(m) = alll + u,l, + . . . + al.. (75)

Iterating through (74)s times, we find that

+(m+.) = a w1’11 + awflz -1- . “ “ -t- anp~’1~. (76)

If KI is the eigenvalue having the greatest absolute value,

then ifs is large, we have substantially that

+(~+s) = alpls~l. (77)

Equation (74) must represent a stationary process when SOR

has converged and so ~, = 1 at the solution point. It is inter-

esting to note that the eigenvector 21of $ti,x is, or is propor-

tional to, the required eigenvector of A when the correct k

is substituted into (71).

Rewrite (71) as

B$=O (78)

where

B=.4– AI (79)

with an assumed or computed A approximation. The con-

vergence theorem [34, p. 240] states that if B is symmetric

and positive semidefinite, with all diagonal terms greater

than zero (which can always be arranged unless one of them

vanishes), and if the correct k is employed, then the method

of successive displacements (SOR with u = 1) converges to

the solution whatever @ is initially. It will also converge

[34, pp. 260-262] for 0<0<2 if the elements b~j=bi,SO

(i#j) and b,,> O.

As will usually happen, an eigenvalue estimate will not be

correct. If it deviates from the exact eigenvalue by a small
amount we can expect PI, in (77), to be slightly greater than

or less than unity. Therefore +(~+sl will grow or diminish

slowly as SOR iteration proceeds, It cannot converge to a

solution as B is nonsingular. (B is termed singular if its

determinant vanishes.) However, the important point is that

whether @tends to vanish or grow without limit, its elements

tend to assume the correct relative values. In other words,

the “shape” of 1$converges to the correct one. After several

SOR iterations the approximate @ is substituted into the

Rayleigh quotient [35, pp. 74-75]

(80)
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Equation (80), which depends only upon the “shape” of +,

is stationary about the solution point. In other words, Z~~

is a reasonable estimate to the eigenvector then (80) pro-

duces an improved eigenvalue estimate. The bracketed

superscripts give the number of the successive eigenvalue

estimate and are therefore used in a different context from

that in (74). Using the new eigenvalue approximation, and

returning to the SOR process with the most recent field esti-

mate, a second and better estimate to @is found, and so on

until sufficient accuracy is obtained. Whether or not con-

vergence has been achieved may be gauged firstly by observ-

ing the percentage change in two or more successive eigen-

value estimates. If the change is considered satisfactory, per-

haps less than one-tenth of a percent, then the displacement

norm as a percentage of the vector norm should be inspected.

(The norm of a column matrix is often defined as the square

root of the sum of squares of all elements.) When this is

within satisfactory limits, the process may be terminated.

These requirements must be compatible in that one cannot

expect the displacement norm to be very small if the eigen-

value estimate is very inaccurate. What constitutes sufficient

stationarity of the process is largely a matter of practical

experience with the particular problem at hand and no gen-

eral rule can be given. This entire computing procedure,

including a optimization, is described in [34, pp. 375-376]

and [38, pp. 114-129]. Moler [38] points out that no proof

exists guaranteeing convergence with the Rayleigh quotient

in the outer loop. However, experience indicates that with a

reasonable A estimate to begin with, and with other condi-

tions satisfied, we can be fairly confident.

Generally, the higher the accuracy required, the smaller

the mesh interval and the larger the number of equations to

be solved. The number of eigenvalues of Qti,x equals the

order of the matrix and a large number of eigenvalues means

that they are closely packed together. It is therefore clear,

from (76), that if the dominant and subdominant eigenvalues

of $. ,A(Y1 and wZ)are nearly equal, the process (74) will need

a great number of iterations before the dominant eigenvector

“shape” emerges. In fact, successive overrelaxation correc-

tions could be so small that roundoff errors destroy the

entire process and convergence never occurs. The answer is

to start off with a crude mesh having, perhaps, one hundred

nodes in the guide cross section. Solve that matrix eigenvalue

problem, halve the mesh interval, interpolate (quadratically

in two dimensions, preferably) for the newly defined node

potentials, and then continue the process. The rational

behind this approach is that each iterative stage (other than

the first) begins with a highly accurate field estimate and so

few iterations are required for the fine meshes. For arbitrary

boundaries, programming for mesh halving and interpola-

tion can be an onerous chore.
As one additional point, the effect of Neumann boundary

conditions is to make B slightly nonsymmetric and so con-

vergence of the SOR process cannot be guaranteed. This

occasionally causes iteration to behave erratically, and some-

times fail, for coarse meshes in which the asymmetry is most

pronounced. Otherwise, the behaviour of such almost sym-

metric matrices is similar to that of symmetric ones. The

most convenient way to guarantee symmetric matrices is to

employ variational methods in deriving difference equations

near boundaries. Forsythe and Wasow [34, pp. 182–1 84]

give a good account of this approach.

When the solution for the first mode is obtained,

det (B)= O with the correct A substituted into (79). If one

then wanted to solve for a higher mode, a new and greater A

estimate would be used, If this differs from the first by a, this

is equivalent to subtracting a from all diagonal terms of B,

Now, if p is any eigenvalue of B, then

B+ = p~. (81)

Subtracting aI from both sides,

(1? – al)+ = (p – a)+ (s~)

we see that all eigenvalues of the new matrix (B– al) are

shifted to the left by a units. Since B had a zero eigenvalue,

at least one eigenvalue must now be negative. A symmetric

matrix is positive definite if and only if all of its eigenvalues

are positive [16, p. 105] and positive semidefinite if all are

nonnegative. Therefore, (B— aZ) is not positive semidefinite

and so the convergence theorem is violated. Consequently,

the previous SOR scheme cannot be employed for modes

higher than the first.

Davies and Muihvyk [32] published an interesting account

of the SOR solution of several arbitrarily shaped hollow

waveguides. Typical cutoff wavenumber accuracies were a

fraction of one percent. This is an interesting result as rea-

sonable accuracy was obtained even for those geometries

containing internal corners. Fields are often singular near

such points. The finite difference approximation suffers

because Taylor’s expansion is invalid at a singularity. If

errors due to reentrant corners are excessive, there are sev-

eral approaches available. The reader is referred to Motz

[39] and Whiting [45] in which the field about a singularity

is expanded as a truncated series of circular harmonics.

Duncan [33] gives results of a series of numerical experi-

ments employing different finite difference operators, mesh

intervals, etc.

An algorithm has recently been developed [27] which

guarantees convergence by SOR iteration. The principle is to

define a new matrix

C=~B (83)

C is symmetric whether or not B is. Equation (78) becomes

C+ =() (84)

which is solved by SOR. Note that

det (C) = det (S) det (B) = (det (B))’ (85)

and so (84) is satisfied by the same eigenvalues and eigen-
vectors as (71) and (78).

SOR is guaranteed to bc successful on (84) as C is positive

semidefinite for any real B. Note that ix> O for any real col-

umn matrix x. Substitute the transformation x= By giving

Y~By z YCY >0 which defines a positive definite matrix C.

If det (C)= O, as happens at the solution point, then C is

positive semidefinite and so convergence is guaranteed. This
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much is well known. The usefulness of the algorithm is that

it describes a method of deriving the nonzero elements of

one row at a time of C, as required by SOR, without recourse

to Bin its entirety. It is shown that the gth row of C requires

only the gth node point potential and those of twelve other

nodes in its immediate vicinity. The operations are expressed

in the form of a thirteen-point finite difference operator.

Thus, because storage requirements are minimal, and C is

positive semidefinite, SOR can be employed for higher

modes.

This method requires considerably more logical decisions,

while generating difference equations near boundaries, than

does the usual five-point operator. The process can be

speeded up considerably by generating (and storing) these

exceptional difference equations only once for each mesh

size.’ In this way, the computer simply selects the appropriate

equation for each node as required. In the internal region,

difference equations are generated very quickly so that stor-

ing them would be wasteful. This is an entirely feasible

approach because nodes near boundaries increase in num-

ber only as h–l while the internal ones increase as h–z

approximately. This boundary-node storage procedure

would likely be profitable for the five-point difference

operator as well.

The method can be adapted to the deterministic problem

(67). Normally, this would not be required, but if one at-

tempts higher order derivative approximations at the bound-

ary, for the Neumann or Cauchy problem, SOR often fails

[37, pp. 5&53]. Because it guarantees positive definiteness,

a suggested abbreviation is PDSOR.

Recently, Cermak and Silvester [29] demonstrated an

approach whereby finite differences can be used in an open

region. An arbitrary boundary is drawn about the field of

interest. The interior region is solved in the usual way and

then the boundary values are altered iteratively, until the

effect of the boundary vanishes. Then, the solution in the

enclosed space corresponds to a finite part of the infinite

region.

Davies and Muilwyk [40] have employed finite differences

in the solution of certain waveguide junctions and discon-

tinuities. The method is applicable when the structure has a

constant cross section along one coordinate. If this is so,

the ports are closed by conducting walls and their finite dif-

ference technique for arbitrarily shaped waveguides [32]

may be used. A limitation is that the ports must be suffi-
ciently close together so that one seeks only the first mode in

the newly defined waveguide. Otherwise, SOR will fail as

described previously.

C. Parabolic and Hyperbolic Problems

Prime examples of these classes of differential equations

are furnished by the wave equation

(86)

which is hyperbolic and the source-free diffusion equation

(87)

which is parabolic. Note that if @ is time harmonic, (86)

becomes the Helmholtz equation. If @ is constant in time,

both becomes Laplace’s equation.

The solutions of partial differential equations (86) and (87)

are the transient responses of associated physical problems.

The solution of (86) gives the space-time response of a scalar

wave function. Equation (87) governs the transient diffusion

of charge in a semiconductor, heat flow through a thermal

conductor, or skin effect in an imperfect electrical conductor

[78, pp. 235-236]. Kis the diffusion constant. It is a function

of temperature, mobility, and electronic charge or thermal

conductivity, specific heat, and mass density, depending

upon the physical problem. For example, if a quantity of

charge (or heat) is suddenly injected into a medium, the

electric potential (or temperature) distribution is given by

the solution of (87). The result o is a function of space and

time,

Such problems are more involved computationally than

the elliptic problem is, due partly to the additional indepen-

dent variable. The function and sufficient time derivatives at

t= O must be specified in order to eliminate arbitrary con-

stants produced by integration. It is then theoretically pos-

sible to determine @for all t.Problems specified in this way

are known as initial-ualue problems. To be really correct, the

partial differential equation furnishes us with a boundary-

value, initial-value problem.

The finite difference approach is to discretize all variables

and to solve a boundary value problem at each time step.

For simplicity, consider the one dimensional diffusion equa-

tion

Wp 1 alj
— —— .

~“K8t
(88)

To solve for 4(x, t),the initial value @(x, O) and boundary

conditions, say, o(O, t)= O and (tl@/dx) I X=1= O are given.

Discretization of (88) gives

~~–1,.i – 24~,1 + 4%+1,3’ ~t,~+l – ~i,j
.

h’ Kk
(89)

where h and k are the space and time intervals respectively.

Rather than the central difference formula for second deriva-

tives, forward or backward differences must be used at the

boundary points—unless Dirichlet conditions prevail.

The first of each subscript pair in (89) denotes the node

number along x and the second denotes the time-step num-
ber. Therefore

~ = ~h.> i=o, 1,2, . . .
(90)

t = jk; j=o, 1,2, . . . .

Rearranging (89)

+t,j+l = @i,j + ‘(~~-l.~ – z+~,~ + ~~+1,~) (91)

with

r = Klc/hZ. (92)

In Fig. 8, the problem is visualized as a two-dimensional

region, one dimension t being unbounded. This algorithm

presents an explicit method of solution as each group of
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Fig. 8. Finite dfierence mesh for exdicit solution
of an initial value problem.

three adjacent pivots can be used to predict one potential at

the next time step. In this way, the solution is advanced in

time as long as required or until error accumulation becomes

unacceptable.

There is a stability criterion that must be satisfied. It can

be shown that the explicit method with one space coordinate

is valid only when O< r< ~. This restriction, in conjunction

with (92), indicates that the increased amount of computing

required for improved accuracy is considerable. If h is halved

then k must be quartered. The stability criterion is still more

stringent for problems having two space dimensions, requir-

ing that O< r< ~. The explicit solution of the wave equation

is also subject to a stability constraint.

Another approach, known as the Crank-Nicolson method,

requires the solution of all node potentials before advancing

the time step. It is unconditionally stable and so does not

require terribly fine time intervals. This advantage is partially

offset, however, by the fact that all potentials at each time

step must be solved as a system of simultaneous, linear

equations. Thus it is called an implicit method. The final

result is that the implicit method is some three or four times

faster than the explicit one.

The reader will find very fine introductions to this subject

in [12] and [44]. Three books, dealing generally with finite

differences and with special sections of interest here, are [3 I],

[34], and [35]. In [30] and [41], initial value problems are

discussed. Recently, Yee [46, pp. 302–307] reported some

results on transient electromagnetic propagation.

It is disappointing to note that in spite of the great amount

of work done on the subject, in practice the solution of many

initial value problems exhausts the capabilities of modern

digital machines. Problems having two spatial dimensions

can easily take many hours to solve with moderate accuracy.

Forsythe and Wasow [34, pp. 11–14] have estimated one

week for such a problem having 10000 nodes. Using a mod-

ern computer, the time would be reduced to perhaps one-

third of that. A three-dimensional problem, solved in fine
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detail, could easily take 1000 years! There appears to be an

answer, however, and that is through hybrid computation,

the subject of Section VI.

D. Integral Equations

As an alternative to posing a problem in terms of partial

differential equations, it may be cast into the form of an

integral equation. This approach is particularly useful for

certain antenna problems where the Green’s function is

known in advance. Its efficacy is questionable in arbitrarily

shaped closed regions because the numerical solution of the

Green’s function, for each source point, is as difficult as the

solution of the original problem itself. The integral approach

is therefore useful in many free-space studies, and when the

Green’s function may be found analytically without too

much trouble.

Insofar as this section is concerned, it is sufficient to point

out that the finite difference approach can be used. For a

thin, arbitrary antenna, the integral

gives the z component of vector potential. R is the distance

between the source and the observation point, i.e.,

R= [r’–rl. (94)

If the antenna is excited by a source at a given point, the ap-

proximate current distribution can be computed. This is

accomplished by assuming I, to be constant, but unknown,

over each of the n subintervals. The integration in (93) is per-

formed with the trapezoidal rule, thus producing an equation

in n unknowns. Enforcing the required boundary conditions,

n equations are produced and so the unknowns are found by

solving a set of simultaneous, linear equations. (Higher

order integration schemes may be used if the current distri-

bution along each subinterval is presumed to be described

by a polynomial.) With the current distribution known, the

potential may be calculated at any point in space.

A good, descriptive introduction is furnished by [53]. In

[47], [49] -[51], and [54] the solution of integral equations,

in radiation and scattering problems, through matrix

methods is described. Fox [35] discusses mathematical and

practical aspects of Fredholm (corresponding to the elliptic

problem) and Volterra (initial-value problem) integral equa-

tions. The quasi-TEM microstrip problem is dealt with in

[48] and [52]. The major difficulty is the derivation of the

Green’s function; the numerical problem is insignificant by

comparison.

Variational methods (Section V) offer another approach

to the solution of integral equations.

V. VARIATIONAL METHODS

This subject, although not terribly new, is becoming

increasingly important for several reasons. In the first place,

it is relatively easy to formulate the solution of certain dif-

ferential and integral equations in variational terms. Sec-

ondly, the method is very accurate and gives good results

without making excessive demands upon computer store and
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time. The solution is found by selecting a field which mini-

mizes a certain integral. This integral is often proportional to

the energy contained in the system and so the method em-

bodies a close correspondence with the real world.

The literature on variational methods is so scattered that

there is good reason to collate and review the principles here.

It is hoped that by reviewing these ideas, and relating them

to microwave problems, the engineer will be encouraged to

make immediate and more general use of them. Otherwise,

the initiate could well spend many months accumulating the

required information before being able to apply it.

The following theory is concerned almost exclusively with

the solution of scalar potentials. Obviously then, static fields

are the immediate beneficiaries. In addition, time-varying

fields, that may be derived from a single vector potential,

are also easily catered for. Although there are some indica-

tions of how to proceed, the author has not seen any general

computer methods for fields with all six components of

electric and magnetic field present. Such fields require both

an electric and magnetic vector potential function to gen-

erate them. Perhaps it would be just as well to solve the

electric and magnetic fields directly rather than through two

potential functions.

A. Hilbert Function Spaces

The concept of a Hilbert function space is, in principle,

very simple and most useful as well. It consists of a set of

functions that obey certain rules. Typically, we will con-

sider those functions belonging to this space as being all

those that are possible solutions of any particular field prob-

lem we wish to solve. For example, the field within a three-

dimensional region bounded by a perfectly conducting sur-

face, having some distribution of charge enclosed, is the

solution of the Poisson equation

–V’1$ = ~. (95)
e

@is some function of position, i.e., o(P). We know that the

solution must be one of or a combination of functions of the

form u(P) = sin (lm/a)x. sin (nzr/b)y. sin (nm/c)z in a rec-

tangular region. a, b, and c are the dimensions of the rec-

tangular region and 1, m, and n are integers. If the conduct-

ing boundary of the box is held at zero potential any one or

summation of harmonic functions u will vanish at the walls
and will likewise give zero potential there. These compo-

nents of a Fourier series are akin to vector components of a

real space insofar as a summation of particular proportions

of functions yields another function whereas vector summa-

tion of components defines a point in space. Thus, a sum-

mation of harmonic “components” of the above form de-

fines a particular function which, by analogy, we consider

to be a point in an abstract function space. For this reason,
such functions are often called coordinate functions. The

number of dimensions may be finite or perhaps infinite. The

Fourier series is an example of a particular function space

consisting of orthogonal coordinate functions. In general,

however, these functions need not be orthogonal.

The requirements we have placed upon functions belong-

ing to the function space is that they be twice differentiable

(at least) and that they satisfy the homogeneous Dirichlet

condition ~(s) = O at the conducting walls. Such functions

are considered to belong to a linear set. By this is meant that

if any two functions u and v belong to the set, then u+ v and

au (where a is a constant) likewise belong to it. In other

words, the functions u+ v and au are also twice differentiable

and satisfy the relevant boundary conditions.

An inner product

s(U,V)= uv”d~ (96)
Q

is defined which, in a sense, gives the “component” of one

function in the “direction” of the other. This appears rea-

sonable when we recall that it is precisely in this way that a

Fourier component, v (omitting, for the moment, the com-

plex conjugate*) of an arbitrary function u is found. It is

really here that the analogy between vector and function

spaces becomes obvious. The reason for including the com-

plex conjugate sign will be shown in a moment. The integra-

tion is performed over Q which may be a one, two, or three-

dimensional physical space depending on the problem. In

our example, the limits correspond to the walls. If u and v

are vector functions of position, we alter (96) slightly to

include a dot between them, thus signifying the integral of

the vector product u. v. In this work, however, we will con-

sider them to be scalars although the generalization of the

subsequent derivations should be fairly straightforward.

In addition to linearity, functions that are elements of a

Hilbert space must satisfy the following axioms. For each

pair of functions u and v belonging to the linear set, a num-

ber (u, v) is generated that obeys the following axioms:

(u, v) = (v, U)*; (97)

(aIu, + a,uz, v) = al(ul, v) + a,(u,, v); (98)

(u, u) > o; (99)
if

(u, u) = O then u = O. (100)

Note that the definition of inner product (96) satisfies re-

quirements (97~100) for all well-behaved functions. Note

also that in a real Hilbert space (i.e., one spanned by real

functions), (u, v)= (v, u). From axioms (97) and (98) it is

easy to see that

(u, au) = a“{v, u)* = a’(u, v) (101)

where a is a complex number here.

As a result of these definitions it is clear that an inner

product whose factors are sums can be expanded according

to the rules for multiplication of polynomials. The essential

difference is that the numerical coefficient of the second fac-

tor must be replaced by its complex conjugate in carrying it

outside of the brackets.

It is clear now why the complex conjugate must be em-

ployed in axiom (97). Property (99) states that (u, u)2 O.

Therefore, due to the linearity of the function space, new

elements au must also satisfy (au, au) ~ O where a is any

complex number. If property (100) were of the form {u, v)
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= (v, u) then we would have that (au, au) =a’(u, u) which,

for arbitrary complex a, would be a complex quantity and

not positive or equal to zero, perhaps even negative. Thus

(99) would be violated.

In the following, we will assume implicitly that the norm

of each function, defined by

]/lL/l == <~~ (102)

is finite. The operation beneath the radical is akin to the

inner product of a vector with itself and so I(UI\ is, by anal-

ogy, a measure of the “length” or “magnitude” of the func-

tion. Insofar as a field is concerned, it is its rms value.

B. The Extremum Formulation

Among elliptic differential equations, there are two classes

we are interested in: the deterministic and the eigenvalue

problem. Forsythe and Wasow [58, pp. 163-164] point out

that variational approaches are “computationally significant

for elliptic problems but not for hyperbolic problems,” They

leave its application to parabolic problems open. The prin-

ciple behind the variational method in solving elliptic prob-

lems rests on an approach which is an alternative to direct

integration of the associated partial differential equation.

The latter approach is often attempted by means of a

Green’s function conversion of a boundary value problem to

an integral equation. It frequently becomes overly compli-

cated, if not altogether impossible to handle, because the

Green’s function itself is difficult to derive. On the other

hand, a variational formulation presents an alternative

choice—to find the function that minimizes the value of a

certain integral, The function that produces this minimal

value is the solution of the field problem. On the face of it

the alternative seems as unappealing as the original problem.

However, due to certain procedures available for determin-

ing this minimizing function, the variational formulation has

great computational advantages. In addition, convergence

can be guaranteed under certain very broad conditions and

this is of considerable theoretical and numerical conse-

quence.
Illustrative of the generality of the method is the use of a

general operator notation L. In practice, a great variety of

operations may be denoted by this single letter.

1) The deterministic problem: The deterministic problem

is written

Lu = f (103)

where~=~(l’) is a function of position. If

L=–vz (10.!J

and

.f”~ (105)
e

is a known charge distribution, we require to find u, the

solution of the problem under appropriate boundary condi-

tions. (The minus sign in (104) makes the operator positive

definite, as will be shown.) Commonly, these boundary con-

ditions take the forms (58)-(60). In the first instance we will
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concentrate on certain homogeneous boundary conditions,

i.e., (58}(60) with g =p =g = O.

Ifj= O, (103) becomes Laplace’s equation. IfL= –(V2+k2)

then (103) represents one vector component of an inhomo-

geneous Helmholtz equation. u is then one component of the

vector potential and ~ is an impressed current times p.

To begin the solution, we must consider a set of all func-

tions that satisfy the boundary conditions of the problem

and which are sufficiently differentiable. Each such element

u of the space belongs to the field of definition of the operator

L. Symbolically, u= D.. We then seek a solution of (103)

from this function space.

We consider only se~-a~oint operators. The self-adjoint-

ness of L means that (Lu, v) — (u, Lv), in which u, v= DL, is a

function of u and v and their derivatives on .r only. (s is the

boundary of Q and may be at infinity.) To have a se~-

adjoint problem we must have

(Lz.L,V)=(’u,Lv). (106)

It will be seen that (106) is required in the proof of the min-

imal functional theorem and therefore is a requirement on

those problems treated by variational methods in the

fashion described here. Whether or not an operator is self-

adjoint depends strongly upon the associated boundary

conditions.

In addition, the self-adjoint operator will be required to

be positive definite. The mathematical meaning of this is that

(Lu, U) >0 (107)

whenever u is not identically zero and vanishes only when
U=().

The significance of these terms is best

simple example. Let L= – V2. Therefore

s(Lu, U) = – vvzudo.
Q

illustrated by a

(108)

For convenience, take u and v to be real functions. Green’s

identity

S::ds=JnVuVodQ+ SnvV2udfi (109)

converts (108) to the form

s sall
(h, v} = Vu. Vudn – V—d!s (110)

$? .s drb

in which the last integration is performed over the boundary.

n is the outward normal. The one-dimensional analogue of

(110) is integration by parts. Similarly

Under either the homogeneous Dirichlet or Neumann
boundary conditions, the surface integrals in (1 10) and (1 11)

vanish. Under the homogeneous Cauchy boundary condi-

tion, they do not vanish but become equal. At any rate, L is
therefore self-adjoint under any one of these boundary con-

diticms or under any number of them holding ove~ various
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sections of the boundary. Property (106) is akin to matrix

symmetry.

Positive definiteness of L is readily observed by making

u= v in (110) and substituting any of the previous homo-

geneous boundary conditions. An additional requirement,

for the homogeneous Cauchy condition to satisfy (107), is

that u> O.

It is a consequence of these properties that we can make

the following statement: if the operator L is positive definite

then the equation Lu=f cannot have more than one solu-

tion. The proof is simple. Suppose the equation to have

two solutions U1 and w such that Lul=f and Lu2 =f. Let

w= u1— uZ. Since the operator is a linear one (a further

requirement) we obtain (Lw, w)= O. Since L is positive

definite, we must then have w = O and so u1= uZ, thus proving

that no more than one solution can exist. This is simply a

general form of the usual proofs for uniqueness of solution

of boundary-value problems involving elliptic partial dif-

ferential equations,

For the solution of a partial differential equation, it was

stated earlier that we will attempt to minimize a certain

integral. The rule for forming this integral, and subsequently,

ascribing a value to it, is a particular example of afunctional.

Whereas a function produces a number as a result of giving

values to one or more of independent variables, a functional

produces a number that depends on the entire form of one

or more functions between prescribed limits. It is, in a sense,

some measure of the function. A simple example is the inner

product (u, v).

The functional we are concerned with, for the soIution of

the deterministic problem, is

F = (Lu, u) – 2(u, ~) (112)

in which we assume that u and f are real functions. The more

general form, for complex functions is

F = (Lu, u) – (ujj) – (f, u). (113)

It is seen that the last two terms of (1 13) give twice the real

part of (u, f ), Concentratingon(112), we will now show that

if L is a positive definite operator, and if Lu =f has a solu-

tion, then (112) is minimized by the solution uO.(The proof of

(113) is not much more involved.) Any other function u~l)~

will give a larger value to F. The proof follows.

Take the function U. to be the unique solution, i.e.,

Lu. = f. (114)

Substitute (114) into (112) for f. Thus

F = (Lu, u) – 2(u, Luo). (115)

Add and subtract (LuO, UO)to the right-hand side of (1 15) and

rearrange noting that if L is self-adjoint (Luo, u)= (Lu, Uo) in

a real Hilbert space. Finally, we obtain

F = {L(u – w), ?A— WJ) — (Luo, Z@). (116)

As L is positive definite, the last term on the right is positive

always and the first is ~ O. F assumes its least value if and

only if u= Uo. To summarize, this minimal functional

theorem requires that the operator be positive definite and

self-adjoint under the stated boundary conditions. It is also

required that the trial functions come from the field of defi-

nition of the operator L; i.e., they must be sufficiently dif-

ferentiable and satisfy the boundary conditions. Otherwise,

a function, which is not a solution, might give a lesser value

to F(u) and delude us into thinking that it is a better approx-

imation to the solution.

From (116), note that the minimal value of the functional

is
~i. = _ (LuO, ZJo)F (117)

which occurs for the exact solution UO. Taking L= — V2, we

get

Fmin =
s

uOV2uOdfi (118)
Q

where the integration is over a volume Q. Now, say that

O(S)= O. Therefore, using Green’s theorem,

Fmin = – JI IVu. 2dL? (119)
Q

This integral is proportional to the energy stored in the

region. The field arranges itself so as to minimize the con-

tained energy !

The most common approach, used for finding the mini-

mizing function, is the Rayleigh-Ritz method. As it relies

upon locating a stationary point, we wish to ensure that

once such a point is located, it in fact corresponds to the

solution. This is important because a vanishing derivative is

a necessary, although not a sufficient condition for a mini-

mum. In other words, if a function uOG DL causes (112) to

be stationary, is UOthen the solution of (103)? It is easy to

show that this is so. Let

5(,) = F(uo + q) – F(’uo) (120)

where c is an arbitrary real number. Using (112), substitut-

ing the appropriate expressions, and taking L to be self-

adjoint, we obtain

~(e) = 2c(Lu, – f, ~) + e2(Lq, q) (121)

after some algebraic manipulation. Differentiating

dti
— = 2(LU0 – f, 7?)+ w% ~)
de

(122)

which must vanish at a stationary point. By hypothesis, this

occurs when c= O, therefore

(Luo – j, TI) = O. (123)

If this is to hold, for arbitrary v, then we must have that

LUO =f identically. In other words, the stationary point cor-

responds to the solution.
2) The eigenualue problem: Functional (115) cannot

a priori be used for the eigenvalue problem

Lu = iU (lp~)

because the right-hand side of (124) is not a known function

as is f in (103). The relevant functional, for the eigenvalue

problem, is
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~ = @u, ‘u)

(u, u)
(125)

where UG DL. Equation (80) is one particular instance of it.

It is often called the Rayleigh quotient. If F~in is the lowest

bound, attained for some ul# O, then F~in = x is the lowest

eigenvalue of operator L and U1is the corresponding eigen-

function.

The proof of the preceding statements is quite direct. Let

v be an arbitrary function from the field of definition of

operator L, i.e., VG DL. Let a be an arbitrary real number.

Therefore ul+a~e DL. We want to investigate the conditions

under which F is stationary about u1. Substitute

into (125) giving

F=

U=ul+a?l (126)

(L(u, + aq), u, + a~)
. (127)

(’w + q, u, + (q)

As UI and 7 are fixed functions, F is a function only of a,

Differentiate (127) with respect to a. Then, by hypothesis,

the derivative vanishzs when a = O. We therefore get

(Lul, ~)(~~1, ~1) – (L~l, ul)(ul, T?) = O. (128)

With F= F~i. and u= ZL substitute (Lu,, u,) from (125) into

(128). Rearranging

Since v is arbitrary,

LU1 – F~i. UI = O (130)

and so FniD is the lowest eigenvalue Xl and U1the correspond-

ing eigenfunction. It is fairly easy to show [62, pp. 220-221]

that if the minimization of (125) is attempted with trial

functions u orthogonal to uI, in the sense

(u, u,) = o, (131)

that F~i. equals the second eigenvalue AZ. Similarly, defining

a Hilbert space orthogonal to U1and u2.,the next eigenvalue

and eigmvector results, and so on.

As the minimum of (125) corresponds to the lowest eigen-

value k, we can rewrite the functional in the following form:

~ < (Lu, U)

– (u, u) “
(132)

The numerator of (132) is positive as L is a positive definite

operator. The denominator is positive by (99). Therefore,

rearranging the inequality

(Lu, U) – h{w, U) >0. (133)

We know that (133) is an equality only for the correct eigen-

value and eigenfunction. Consequently, the left-hand side is

otherwise greater than zero. Therefore, as an alternative to

minimizing (125), we can seek the solution of (1 24) by mini-

mizing

F = {Lu, u) – ~(u, u) (134)
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instead, Successive eigenvalues and eigenvectors are found

by defining orthogonal spaces as before.

The differential equation, whose solution is a minimizing

function, is known as the Euler’s equation. We are interested

in finding functional whose Euler’s equations we wish to

solve, e.g., the Helmholtz equation, Laplace’s equation, etc.

C. Inhomogeneous Boundary Conditions

In solving Lu =f we have considered homogeneous bound-

ary conditions exclusively. Such a restriction causes the

more important problems (e.g., multiconductor lines at

various potentials) to be excluded. This happens because

self-adjointness cannot be proved. Substitute (58), say, into

the surface integrals of (1 10) and (111) to verify this state-

ment. In addition, the space is nonlinear as well.

Let us express inhomogeneous boundary conditions in the

form

B1’tt Is = h, B2u /, = bz, . 0 . (135)

where the B; are linear operators and the b~ are given func-

tions of position on the boundary. Equations (58>(60) are

the most common examples. The number of boundary con-

ditions required depends upon whether or not u is a vector

and upon the order of the differential equation.

Assume that a function of position w exists which is suffi-

ciently differentiable and satisfies boundary conditions (135).

u’ is not necessarily the solution. As w satisfies the boundary

conditions,

B1w/.=bl,Bzwl.=bz,.... (136)

Putting
V=u —’w ) (137)

B,v 1, = O, B2u /, = O (138)

as the B~ are linear operators. We have now achieved homo-

geneous boundary conditions.

Instead of attempting a solution of

Lu=f (139)

we examine

Lv = L(u – W)

= j – Lw.
(140)

Let

f,= f–Lw (141)

and so we can now attempt a solution of

Lv = fl (142)

under homogeneous boundary conditions (13 8). In any par-

ticular case, it still remains to prove self-adjointness for

operator L with functions satisfying (138). If this can be
accomplished, then we may seek the function that minimizes

F = (h, v)– ~(v,fl). (143)

Substitute (137) and (141) into (143). After expansion,

F = (Lzt, U) – 2(tLjf) + (u, Lw) – (h, w)
(144)

+ ~(w, f) – @w, w}.
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f is fixed and w is a particular function selected (which we

need not actually know). Therefore, the last two terms are

constant and can play no part in minimizing the functional

as we have assumed that u is selected from the set of func-

tions that satisfies the required boundary condition. Other-

wise w would depend on u. The last two terms may be deleted

from (144) because of this.

It now remains to examine (u, Lw) – (Lu, w) in the hope

that u and w maybe separated. If this attempt is successful,

then an amended version of (144) may be written which

excludes the unknown w.

Let us illustrate these principles with a practical example.

Solve

–V%=f (145)

under the boundary condition

‘u(s) = g(s). (146)

The symmetrical form of Green’s theorem is

s J((Wv’u –Uv’w)dfl = )W ‘; – ZL: ds (147)
n 8

where n is the external normal to s. Therefore, the third and

fourth terms of (144) are

(u, Lw) – (Lu, W) = h WV2U – wv2w)df2
Jfl

-s(
(148)

du dw
—

)
W~n —U— ds.

s 8n
Since

u(s) = w(s) = g(s) (149)
we have

(zL, Lw) - (LzL, w) = ~ (,; - g ;;)ds. (150)
s

Only the first term on the right-hand side of (1 50) is a func-

tion of u. In addition to neglecting the last two terms of

(144), the last term of (150) maybe disregarded as well. We

are then left with a new functional to be minimized

F=– sQ“Vzu’”-’ly”+f%” ‘15])
Simplify (151) using identity (109)

J– 2 fudfi’.
a

Because of (146), the second and third integrals cancel and

we are left with

that the existence of a function w was an unnecessary

assumption.

Although we shall not demonstrate it here, functional

may be derived for the inhomogeneous Neumann and

Cauchy problems. It is also not too difficult to formulate the

solution of electrostatic problems involving media that are

functions of position.

D. Natural Boundary Conditions

Thus far, we have required that trial functions substituted

into (112) should each satisfy the stipulated boundary con-

ditions. Except for the simplest of boundary shapes, such a

constraint makes it practically impossible to select an ap-

propriate set of trial functions. It turns out, however, that

8u/~nl. =p(s) and du/&z] ~+u(s)u(s) = q(s) are natural bound-

ary conditions for the operator L= — V2. The meaning of this

is that we are now permitted to test any sufficiently differenti-

able functions with the certainty that the minimal value

attained by (112) will be due to the solution and none other.

On the other hand, we cannot entertain this confidence under

the Dirichlet boundary condition.

It is easy to show this for the homogeneous Neumann

problem. The form of the functional is

F=sQ(]Vu12-2.fu)dQ. (154)

Substitute u= UO+CZVwhere n need not be in the field of

definition of L. Differentiate with respect to a, make a= O,

and set the result to zero. Finally, employing Green’s

formula,

Nowhere has q been required to satisfy boundary condi-

tions. As v is arbitrary (155) can hold only if – V2U0 =f and

tkJdn = O. Thus the solution is found with appropriate

boundary conditions.

E. Solution by the Rayleigh-Ritz Method

A number of functional have been derived, the minimiza-

tion of which produce solutions of differential or integral

equations. The remaining question is how to locate the mini-

mizing function. The most popular approach is the Ray-

leigh-Ritz method.
Assume a finite sequence of n functions

where the aj are arbitrary numerical coefficients. Substitute

(156) into (112). Therefore

which is to be minimized for the solution of (145) under

inhomogeneous boundary conditions (146). It happens, in

this case, that (153) has the same form that homogeneous

boundary conditions would produce. It also turns out, here,

j,k=l j= 1

We now wish to select coefficients aj so that (157) is a min-

imum, i.e.,
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dF
-==0; ~=l,z...~.

aai
) (158)

Rearranging (157) into powers of a;,

+ terms not containing a~.

Now, write k instead of j in the second summation, and

assuming that L is self-adjoint

F = (L+i, @~)U;2+ 2 ~ (U@~,dk)a~ak
k#i (160)

– 2(f, @~)U;+ . . , .

Differentiating (160) with respect to Ui and setting equal to

zero

S (L&, ~, > ak = (j, ~,) (161)
k=l

where i= 1, 2, . . . , n. Writing (161) in matrix form

which may be solved for the coefficients al, az, . . . , an by

the methods of Section II-A.

By a very similar approach [62, pp. 226-229], [63, pp.

193–194], the Rayleigh-Ritz method applied to the eigen-

value problem gives

1?’1

1]..= 0

an

which is a matrix eigenvalue problem of form (21). If the

trial functions are orthonormal, the eigenvalue k occurs only

along the diagonal giving

Similarly, (162) would have diagonal terms only, giving the

solution by the Fourier analysis method.

Because the functions are all real and the operator is self-

adjoint, from (97) and (106) we see that both the A and B

matrices are symmetric. Also, B is positive definite which

permits it to be decomposed, as in (23), using real arithmetic

only, thus resulting in an eigenvalue problem of form (22).

It can be shown that (162) and (163) ammoach the solution
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of Lu =f and Lu = Au as n approaches infinity, In practice,

the matrices need not be very large for a high degree of

accuracy to result. Notice also that these matrices are dense.

These characteristics determine that direct methods should

be employed in their solution.

F. Some Applications

The bibliography lists several useful references for the

principles of variational methods. See, for example, [58],

[61], and [63]. One of the most detailed treatments avail-

able is [62].

Bulley [57] solves the TE modes in an arbitrarily shaped

guide by a Rayleigh-Ritz approach. The series of trial func-

tions, representing the axial magnetic field, are each of the

form x~y” thus constituting a two-dimensional polynomial

over the waveguide cross section. Obviously, these trial func-

tions cannot be chosen to satisfy all boundary conditions.

However, it turns out that the homogeneous Neumann con-

dition (which H. must satisfy) is natural and so no such con-

straint need be placed on the trial functions. On the other

hand, the homogeneous Dirichlet condition (which is im-

posed upon E,) is not satisfied naturally and so Bulley’s

method is inapplicable in this case. If the guide boundary is

fairly complicated, a single polynomial has difficulty in ap-

proximating the potential function everywhere. In such a

case, Bulley subdivides the waveguide into two or more fairly

regular regions and solves for the polynomial coefficients in

each. In doing this, his approach is virtually that of the

finite-element method. It differs from the usual finite-element

method in the way that he defines polynomials that straddle

subdivision boundaries while others vanish there.

Thomas [67] solves the TE problem by the use of Lagrange

multipliers. In this way, he permits all trial functions while

constraining the final result to approximate the homoge-

neous Dirichlet boundary condition. Although not essential

to his method, he employs a polar coordinate system with

polynomials in r and trigonometric 0 dependence.

Another possible approach, when boundary conditions

are not natural, is to alter the functional in order to allow

trial functions to be unrestricted [64, pp. 1131-1 133].

By a transformation, Yamashita and Mittra [68] reduce

the microstrip problem to one dimension. They then solve

the fields and line capacitance, of the quasi-TEM mode.

The finite element method is an approach whereby a region

is divided into subintervals and appropriate trial functions

are defined over each one of them. The most convenient

shape is the triangle, for two-dimensional problems, and the

tetrahedron in three dimensions. These shapes appear to

offer the greatest convenience in fitting them toegether, in

approximating complicated boundary shapes, and in satisfy-

ing boundary conditions whether or not they are natural.

Silvester [65], [66] has demonstrated the method in wave-

guide problems. An arbitrary waveguide is divided into

triangular subintervals [65]. If the potential is considered to

be a surface over the region, it is then approximated by an

array of planar triangles much like the facets on a diamond.

Higher approximations are obtained by expressing the

potential within each triangle by a polynomial [66].

Because of high accuracy, the finite element approach
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appears useful for three-dimensional problems without

requiring excessive computing [69].

The method was originally expounded for civil engineer-

ing applications [70], [71 ], but has recently seen increasing

application in microwaves (e.g., [55], [56] as well as the

previous references).

Other implementations of variational methods are de-

scribed in [59] and [60].

VI. HYBRID COMPUTATION

In Section IV-C two methods for the solution of initial

value (transient) problems were introduced. Through the

explicit approach, one is able to predict the potential of any

node at the next time increment as a function of a few adja-

cent node potentials. The disadvantage is that a stability

constraint demands very small time steps, On the other

hand, the implicit method does not suffer from instability,

and permits larger time steps, but requires simultaneous solu-

tion of all node potentials for each step. As a result, both

techniques are very time consuming and sometimes impos-

sibly slow.

The hybrid computer offers a significantly different ap-

proach to the problem. It consists of two major parts—an

analog and a digital computer. The analog is a model that

obeys the same mathematical laws as the problem being

considered. So the analog, which is presumably easier to

handle, simulates the response of the system being studied.

More precisely, the particular form of analog intended here

is known as an electronic dl~erential analyzer. By connecting

electronic units (which perform integration, multiplication,

etc.) together, it is possible to solve ordinary differential

equations under appropriate initial conditions [74]. The

solution is given as a continuous waveform. Whereas the

digital computer will solve the problem in a number of dis-

crete time-consuming steps, the analog gets the answer

almost immediately. The analog computer is faster; it is a

natural ordinary differential equation solver.

This is fairly obvious for an ordinary differential equation,

but how is a partial differential equation to be solved? Con-

sider a one-dimensional diffusion equation

Wp 11$
(165)

==%”

(Many of the following comments apply to the wave equa-

tion as well.) Discretize the spatial coordinates at the ith

node. We have, using central differences,

At boundaries, forward or backward differences must be

used.
We have therefore reduced the partial differential equa-

tion to a system of ordinary differential equations, one at

each node point. This is known as the DSCT (discrete-space-

continuous-time) analog technique. Other formulations

exist as well. The time response of the potential at i, i.e.,

cA(t), may be found by integrating (166). Other functions of

-’+Jt)EG=lRl .A
I+i.,(t)0 n

+I+l(t) 0 n

I *

T* ~t

Fig. 9. Single node, DSCX analog of the one-
dimensional diffusion equation.

—— — —

,+O(t) l+,(t) )+2(t) ~+3(t) ~$dt) FJt)
● x
o .2 .4 .6 .8 1.0

Fig, 10. Simultaneous solution of the one-dimensional difTusion equa-
tion, by DSC’T analog, with four internal nodes.

time @i--l(t) and &-l(t) are forcing functions which are as
yet unknown. Assume, for the moment, that we know them

and let us see how the analog computer can produce the time

response Oi(t).

Fig. 9 indicates, symbolically, the operation of an analog

computer in solving (166). Circles indicate multipliers, the

larger triangle represents an integrator, and the smaller one

an inverter. Assume that functions r&.l(t)and ~ti l(t) are

known, recorded perhaps, and played back into the inte-

grator with the initial.value 4,(0). They are all multiplied by

l/h2 and fed into the integrator in the ratios indicated. This

is then integrated giving

h, ,’ (+i-l(t) – 2@i(0 + b+l(t))dt.@,(t) = : s (167)

In fact, the integrator produces the negative of (167), i.e.,

–@;(t). This is fed back thus completing the circuit and

allowing the process to continue to any time t. An inverter

follows the integrator to alter the sign if required.

We do not, of course, know the forcing functions +;-l(t)

and &l(t).They are the responses of adjacent nodes, and

they in turn depend upon forcing functions defined at other

nodes. However, the boundary conditions @o(t)and @s(t)

are known in advance as well as the initial conditions 4,(0)
for all nodes, or +(x, t) where t= O.

To solve the entire finite difference system at one time

requires as many integrators as there are internal nodes

available. This is demonstrated in Fig. 10. (The factor l/h2 is

incorporated into the integrators for simplicity.) What this

scheme does, in fact, is to solve a system of four coupled

ordinary differential equations in parallel. The analog has
two obvious advantages: 1) rapid integration; and 2)

parallel processing.

In order to reduce discretization error, one increases the

number of nodes. If the intention is to solve all node poten-

tials simultaneously, due to the limited number of integrators

available, the number of nodes must be small. One alterna-
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tive strategy is to attempt an iterative technique reminiscent

of the digital relaxation procedure. This is done by making

an initial guess at the transient response of each internal

node, frequently choosing just constant time responses as

shown by the uppermost curve in Fig, 11. Having made this

initial guess at each node’s time response, each @i(t) is solved

sequentially as described previously. Each di(t), upon being

solved, is transmitted via an ADC (analog-digital converter)

to the digital computer where it is stored as discrete data in

time. Attention is then focused upon node i+ 1 with adjacent

potential responses transmitted from store through DAC

(digital-analog conversion) equipment. OwI(t) is then com-

puted by the analog with the smoothed d,(t) and @A,(t)

acting as forcing functions. The flow of data is indicated by

arrowheads in Fig. 11. In sequence then, node transient

responses are updated by continually scanning all nodes

until convergence is deemed to be adequate. In effect, this

procedure involves the solution of coupled ordinary differ-

ential equations, one for each node, by iteration.

An additional refinement is to solve, not one node poten-

tial at a time but groups of them. The number that can be

catered for is, as pointed out before, limited by the amount of

analog equipment available. This parallel processing speeds

the solution of the entire problem and is one of the ad-

vantages over the purely digital scheme. Furthermore, be-

cause of the continuous time response (i.e., infinitesimal

time steps), we have an explicit method without the disad-

vantage of instability.

Parallel solution of blocks of nodes is the logical approach

for two dimensional initial value problems. Fig. 12(a) shows

one possible format involving the solution at nine nodes.

Forcing functions correspond to solutions at the twelve

nodes excluded from the enclosed region. The set of nodes

being considered would scan the region with alterations to

the block format near boundaries. The making of such log-

ical decisions, as well as storage, is the job of the digital com-

puter.

Hsu and Howe [75] have presented a most interesting

feasibility study on the solution of the wave and diffusion

equations by hybrid computation. The procedures mentioned

above are more fully explained in their paper. Hsu and

Howe did not actually have a hybrid computer available at

the time of their experiments; their results were obtained

through a digital simulation study. Hybrid computation of

partial differential equations is still in its early stages and

little has been reported on actual computing times. How-

ever, some preliminary reports indicate speeds an order of

magnitude greater than digital computing for such problems.

An intriguing possibility, for hybrid solution of the elliptic

problem, is the method of lines. The mathematical theory is

presented in [62, pp. 549–566]. The principle behind it is
that discretization is performed along one coordinate only,

in a two-dimensional problem, giving us a sequence of

strips (Fig. 12(b)). In three dimensions, two coordinates are

discretized, producing prisms. We thus obtain a number of

coupled difference-differential equations. Each equation is

then integrated under boundary conditions at each end of its

strip and with forcing functions supplied by adjacent strips.

km?,, ,,, ,,, -,

+2(7 , =rd I \

o— t

Fig. 11. Iterative DSCT solution of the diffusion equation.

Fig. 12. (a) Iterative, parallel processing scheme for the initial value
problem. (b) Method of lines for the elliptic problem.

The analog computer does not as easily solve two-point

boundary value problems as it does initial value problems.

A common technique is to attempt various initial values at

one end of the strip until the far-end boundary condition is

satisfied. This can often be very wasteful. A better idea is to

solve each two-point boundary value problem as two initial

value problems [7, pp. 239–240], [74, pp. 83–85]. This could

be done for each strip in turn or perhaps in groups. The

entire region must then be scanned repeatedly, in this

fashion, until convergence occurs.

For other approaches to the solution of partial differential

equations by hybrid computation, see [72], [73], [74], [76],

and [77]. Finally, the hybrid system makes the Monte Carlo

method [74, pp. 239–242, 360] a more attractive one.

It should be emphasized that hybrid solution of partial

differential equations is still in its infancy. This section, in

part an optimistic forecast, is intended to show that digital

computing has no monopoly and certainly should not be

considered a more “respectable” branch of computing. The

analog machine integrates rapidly, and the digital machine

has the ability to store information and make logical de-

cisions. It therefore stands to reason that working as a pair,

each in its own domain, substantial advantages will be

gained.

VII. CONCLUDING REMARKS

The intention of this paper is to familiarize the reader
with the principles behind the numerical analysis of elec-

tromagnetic fields and to stress the importance of a clear

understanding of the underlying mathematics. Improper

numerical technique causes one to run up against machine

limitations prematurely.

In the immediate future, emphasis should perhaps be

placed upon the development of finite difference and varia-

tional techniques for solving fields having all components of

electric and magnetic field present everywhere. To date,

with a few exceptions (e.g., [59, pp. 172–1 88]), most methods
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appear to permit solution only of fields deriveable from a

single scalar potential. It is not difficult to formulate and

solve field problems in a multidielectric region, but it may

not correspond to the actual electromagnetic problem. This

is indicated by the continuing discussion of “quasi-TEM”

microstrip waves.

Variational methods are being implemented now to a

greater extent than ever before. Hybrid computation is

likely to assume a significant, or perhaps commanding, role

in field computation due to its greater speed and flexibility.

Ahnost certainly, general purpose scientific computers will

permit optional analog equipment to be added, the analog

elements to be connected and controlled from the program.

Beyond this, it is virtually impossible to predict. It is futile

wishing for computer technology to keep pace with our

problem solving requirements. We have outstripped all

machine capabilities already. The greatest hope is in the

development of new numerical techniques. Due to his in-

sight into the physical processes and his modeling ability,

the engineer is ideally suited to this task.
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